Wide wavelength tuning of optical antennas on graphene with nanosecond response time.

نویسندگان

  • Yu Yao
  • Mikhail A Kats
  • Raji Shankar
  • Yi Song
  • Jing Kong
  • Marko Loncar
  • Federico Capasso
چکیده

Graphene is emerging as a broadband optical material which can be dynamically tuned by electrostatic doping. However, the direct application of graphene sheets in optoelectronic devices is challenging due to graphene's small thickness and the resultant weak interaction with light. By combining metal and graphene in a hybrid plasmonic structure, it is possible to enhance graphene-light interaction and thus achieve in situ control of the optical response. We show that the effective mode index of the bonding plasmonic mode in metal-insulator-metal (MIM) waveguides is particularly sensitive to the change in the optical conductivity of a graphene layer in the gap. By incorporating such MIM structures in optic antenna designs, we demonstrate an electrically tunable coupled antenna array on graphene with a large tuning range (1100 nm, i.e., 250 cm(-1), nearly 20% of the resonance frequency) of the antenna resonance wavelength at the mid-infrared (MIR) region. Our device exhibits a 3 dB cutoff frequency of 30 MHz, which can be further increased into the gigahertz range. This study confirms that hybrid metal-graphene structures are promising elements for high-speed electrically controllable optical and optoelectronic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broad electrical tuning of graphene-loaded plasmonic antennas.

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graph...

متن کامل

Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed ...

متن کامل

Simulation of IR Detector at Communication Window of 1550nm based on Graphene

In this paper, photodetection properties of a Graphene-based device at the third telecommunication window have been reported. The structure of the device is a Graphene-silicon Schottky junction which has been simulated in the form of an infrared photodetector. Graphene has specific electrical and optical properties which makes this material a good candidate for optoelectronic applications. Phot...

متن کامل

Wavelength Hopping using Time Gating of a Chirped Supercontinuum

We propose and demonstrate a new technique for realizing wavelength tuning that promises rapid response over a wide optical bandwidth. Wavelength tuning is obtained by varying the delay of the RF pulse that time-gates a linearly chirped Super Continuum (SC). Preliminary experiments demonstrating static tuning range of 90nm are reported.

متن کامل

MAC-Oriented Programmable Terahertz PHY via Graphene-based Yagi-Uda Antennas

Graphene is enabling a plethora of applications in a wide range of fields due to its unique electrical, mechanical, and optical properties. In the realm of wireless communications, graphene shows great promise for the implementation of miniaturized and tunable antennas in the terahertz band. These unique advantages open the door to new reconfigurable antenna structures which, in turn, enable no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2014